IGBT技術不能落后于應用要求。因此,英飛凌推出了最新一代的IGBT芯片以滿足具體應用的需求。與目前逆變器設計應用功率或各自額定電流水平相關的開關速度和軟度要求是推動這些不同型號器件優化的主要動力。這些型號包括具備快速開關特性的T4芯片、具備軟開關特性的P4芯片和開關速度介于T4和P4之間的E4芯片。
表1簡單介紹了IGBT的3個折衷點,并對相應的電流范圍給出了建議。
IGBT和二極管的動態損耗
為研究和比較這三款不同芯片在雜散電感從23nH到100nH時的開關損耗和軟度,我們選用了一種接近最優化使用T4芯片的合理限值的模塊。因此,選擇一個采用常見的62mm封裝300A半橋配置作為平臺,而模塊則分別搭載了這三款IGBT芯片。
這三個模塊都采用了相同的高效發射極控制二極管和柵極驅動設置。圖1為實驗設置。
圖2顯示了兩個不同雜散電感對配備IGBT-T4的300A半橋的開通波形的影響。
當電流升高后,更高的雜散電感Ls不僅可以增大器件端子的電感壓降(Δu=-L*di/dt),而且還能影響電流上升速度di/dt本身。盡管寄生電感使導通速度減緩,但導通損耗卻大幅降低。 大功率電感廠家 |大電流電感工廠